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We present the results of the inviscid spatial stability of a parallel compressible 
mixing layer. The parameters of this study are the Mach number of the moving 
stream, the ratio of the temperature of the stationary stream to that of the moving 
stream, the frequency, and the direction of propagation of the disturbance wave. 
Stability characteristics of the flow as a function of these parameters are given. It is 
shown that if the Mach number exceeds a critical value there are always two groups 
of unstable waves. One of these groups is fast with phase speeds greater than & and 
is supersonic with respect to  the stationary stream. The other is slow with phase 
speeds less than t and supersonic with respect to  the moving stream. Phase speeds for 
the neutral and unstable modes are given, as well as growth rates for the unstable 
modes. Finally, we show that three-dimensional modes have the same general 
behaviour as the two-dimensional modes but with higher growth rates over some 
range of propagation direction. 

1. Introduction 
An understanding of the stability characteristics of compressible mixing layers is 

of fundamental interest and is also extremely important in view of the projected use 
of the scramjet engine for the propulsion of hypersonic aircraft. Knowledge of these 
characteristics may allow one, in principle, to control the downstream evolution of 
such flows. This is particularly important because of the observed increase in the flow 
stability a t  high Mach numbers (Brown & Roshko 1974; Chinzei et al. 1986; and 
Papamoschou & Roshko 1986, 1988). Because of the gain in stability, natural 
transition may occur at downstream distances which are larger than practical 
combustor lengths. A number of techniques to enhance mixing are discussed by 
Kumar, Bushnell & Hussaini (1987). A detailed understanding of the linear stability 
characteristics of compressible mixing layers will be of aid in mixing enhancement. 

In this paper we will examine the inviscid stability of a compressible mixing layer, 
the interfacial region between a moving gas a t  + 00 and a stationary gas at - 00. The 
stability of the mixing layer in a compressible fluid has not been studied as 
extensively as the same flow in an incompressible fluid. The basic formulation of the 
theory for the stability of compressible shear flows, both free and wall bounded, is 
due to Lees & Lin (1946), and Dunn & Lin (1955) first showed the importance of 
three-dimensional disturbances for the stability of these flows. 

There have been a number of theoretical studies of the stability of compressible 
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free-shear layers in recent years. These include that of Tam & Hu (1988) who 
examined the stability of the compressible mixing layer in a channel using the 
hyperbolic tangent profile, and Zhuang, Kubota & Dimotakis (1988) who also 
studied the mixing layer with the hyperbolic tangent profile and found decreasing 
amplification with increasing Mach number. Ragab (1988) carried out a numerical 
solution of the two-dimensional compressible Navier-Stokes equations for the 
wakelmixing layer behind a splitter plate, and then carried out a linear stability 
analysis of the computed mean flow. He found that increasing the Mach number 
leads to a strong stabilization of the flow and that the disturbances have large 
dispersion near the splitter plate and smaller dispersion downstream. Ragab & Wu 
(1988) examined the viscous and inviscid stability of a compressible mixing layer 
using both the hyperbolic tangent and Sutherland profiles. They found that if the 
Reynolds number was greater than 1000, the disturbances could be calculated very 
accurately from inviscid theory. In  addition, they reported that non-parallel effects 
are negligible. It seems that in this study their main interest was in determining the 
dependence of the maximum growth rate of the disturbances on the velocity ratio of 
the mixing layer. They concluded that the maximum growth rate depends on the 
velocity ratio in a complex way, with the maximum growth rate appearing at a 
particular non-zero velocity ratio. 

Earlier studies of the stability of compressible mixing layers include those of 
Lessen, Fox & Zien (1965, 1966) and Gropengiesser (1969). The inviscid temporal 
stability of the compressible mixing layer to two- and three-dimensional disturbances 
was studied by Lessen et al. for subsonic disturbances (1965) and supersonic 
disturbances (1966). They assumed that the flow was isoenergetic and, as a 
consequence, the temperature of the stationary gas was always greater than that of 
the moving gas. In  fact, because the ratio of the temperature at 00 varies as the 
square of the Mach number, the stationary gas is much hotter than the moving gas 
a t  even moderately supersonic speeds. Gropengiesser (1969) re-examined this 
problem, but without using the isoenergetic assumption. Consequently, he was able 
to treat the ratio of the temperatures of the stationary and moving gas as a 
parameter. He carried out inviscid spatial stability calculations for the compressible 
mixing layer using a generalized hyperbolic tangent profile (see his equation (2.27)) 
to approximate the Lock profile for temperature ratios of 0.6, 1.0 and 2.0 and for 
Mach numbers between 0 and 3. We will discuss Gropengiesser’s results in comparison 
with ours in a later section. 

Gill (1965) found that ‘top hat’  jets and wakes have an infinite set of unstable 
modes. These arise from multiple reflection of sound waves within the layer formed 
by the discontinuity a t  the edges of the jets and wakes. Blumen, Drazin & Billings 
(1975) and Drazin & Davey (1977) investigated the temporal stability of a 
compressible mixing layer. They used a hyperbolic tangent profile for the velocity 
and assumed that the temperature was a constant throughout the layer. In both of 
these studies multiple instability modes were found near a Mach number of one. 
Quite recently, multiple modes were also found in a temporal stability analysis of the 
compressible mixing layer without invoking the assumptions of a hyperbolic tangent 
velocity profile and that of a constant temperature throughout the layer (Macaraeg, 
Streett 6 Hussaini 1988). Mack (1984) carried out an extensive study of the inviscid 
spatial eigenfunctions of the compressible boundary layer. He found that there was 
an infinite set of discrete modes of which the first was a vortical mode and all the 
others were acoustic modes. These acoustic modes can be visualized as sound waves 
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undergoing reflection between the wall and the sonic line. The first of the acoustic 
modes is the most unstable of the inviscid compressible boundary-layer modes and 
the maximum growth rate is for its two-dimensional form. 

The results reported here were obtained as the first part of a study of the stability 
of compressible mixing layers in which a diffusion flame is embedded (Jackson & 
Hussaini 1988). We are primarily interested in solving the stability problem over a 
large Mach-number range. As will be seen below, it appears necessary to only 
consider the range 0 < M < 10 in order to be able to deduce the asymptotic ( M - t  00)  

behaviour of the solutions. In  order to understand the effect of the heat release on 
the stability of this flow, one must first understand the stability characteristics of a 
non-reacting flow. It is well known (see Mack 1987 for a review) that the inviscid 
theory is a reliable guide for understanding the stability of compressible shear flows 
at moderate and larger Reynolds numbers. Thus we consider only the inviscid spatial 
stability problem. 

We begin this study by taking the mean velocity profile in the mixing layer to be 
that of the Lock profile (Lock 1951). In  the course of carrying out the stability 
calculations for this profile with different sets of values of the basic parameters, we 
noted some quite interesting features of the solutions, particularly at higher Mach 
numbers. I n  order to examine these features in more detail, we replaced the Lock 
profile with a hyperbolic tangent profile. This is a reasonable approximation to the 
Lock profile a t  low and moderate Mach numbers and has been used by many 
investigators in studying the stability of incompressible mixing layers, see Michalke 
(1972), Monkewitz & Huerre (1982), and Ho & Huerre (1984), as well as compressible 
mixing layers. More importantly from our point of view, we can obtain certain results 
analytically if we use the hyperbolic tangent profile to approximate the velocity 
distribution in the mixing layer. Our aim is to classify the neutral and unstable 
solutions, over a wide range of Mach numbers, using this model. Results for the Lock 
& Sutherland profiles will be presented in a future paper, and will be compared with 
these results. We expect quantitative differences, especially a t  higher Mach numbers. 

In $2 we given the basic equations governing the mean flow and the small- 
amplitude disturbance equation. The boundary condition and the numerical method 
are also discussed in this section. Section 3 contains a presentation of our results and 
conclusions are given in $4. 

2. Formulation of the problem 
We consider the stability of a compressible mixing layer, with zero pressure 

gradient, which separates two streams of different speeds and temperatures. We 
assume that the mean flow is governed by the compressible boundary-layer 
equations (Stewartson 1964). The x-axis is taken along the direction of the flow, the 
y-axis normal to the flow, and the z-axis in the cross-stream direction. We let (U,  V ,  
0 )  be the velocity and T the temperature of this mean flow. All of the variables are 
non-dimensionalized using the free-stream values a t  y = + 00. In what follows we 
assume that the Prandtl number is unity. 

The mean flow equations are first transformed into the incompressible form by 
means of the Howarth-Dorodnitzyn transformation 

Y = l p d y .  P = p V + U  pl:dy, I 
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where p is the density and, because the pressure gradient is zero, 

Next we transform to the similarity variable 

Y 

where C is the constant in Chapman's (1950) linear viscosity law 

,u = CT. (2.4) 

These equations have as a solution the similarity solution given by Lock (1951). 

(2 .5)  

which approximates the Lock profile and can be handled analytically. This profile 
also satisfies the boundary conditions 

However, as discussed in the introduction, we assume here that 

U = ;( 1 + tanh ( r ) ) ,  

U + 1  as y++co, U-tO as y+-co. (2.6) 

As is well known, the temperature distribution can be expressed in terms of the 
velocity field. The temperature boundary conditions are 

T + 1  as Y++GO, T+PT as y+-co. (2.7) 
This yields 

(2.8) 

where y is the ratio of specific heats and M is the Mach number a t  + co. If PT is less 
than one, the stationary gas is relatively cold compared to the moving stream, and 
if PT is greater than one it is relatively hot. 

The flow field is perturbed by introducing wave disturbances in the velocity, 
pressure, temperature and density with amplitudes which are functions of 7. For 
example, the pressure perturbation is 

T = 1 - ( 1  - P T )  ( 1  -U)+;(r- 1)M2U(1 - U ) ,  

p = II(y)exp[i(ax+/3~-wt)], (2.9) 

with the amplitude, a and P the wavenumbers in the downstream (2) and cross- 
stream ( z )  directions, respectively, and w the frequency which is taken to be real. As 
mentioned in the introduction, we are only treating the spatial stability problem. 
Substituting (2.9) for the pressure perturbation and similar expressions for the other 
flow quantities into the inviscid compressible equations yields the ordinary 
differential equations for the perturbation amplitudes (Lees & Lin 1946 ; Dunn & Lin 
1955). It is straightforward to derive a single equation governing II, given by 

17'-T[(a2+p2) T - c ~ ~ M ~ ( U - C ) ~ ]  l7 = 0. (2.10) 
2u' r-- 
u-c 

Here, c is the complex wave velocity 

0 c = -  
a '  

(2.1 1 )  

and primes indicate differentiation with respect to the similarity variable y. 

dimensional disturbances. To this end let 
It is convenient to transform (2.10) to  a form analogous to that for two- 

62 = a2+/32. (2.12) 
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Thus, a = dcos ( 0 ) ,  p = oisin (0), (2.13) 

with O the angle of propagation of the disturbance wave with respect to the flow 
direction. Further, define M and fi by 

&=&, oifi=an. (2.14) 

Applying this transformation to (2.10) yields 

(2.15) 

From the transformation we have 

M = M cos (e), (2.16) 

w w c = - =  
a dcos (8). 

(2.17) 

Here oi is complex. The real part of oi is the magnitude of the wavenumber, while the 
imaginary part of Oi indicates whether the disturbance is amplified, neutral, or 
damped depending on whether 2, is negative, zero, or positive assuming positive 
group velocity. The phase speed, cph, is given by WIG,. For a neutral wave the phase 
speed will be denoted by cN. Finally, note that T is only a function ofM and U,  and 
does not change with the angle of propagation. 

The boundary conditions for fi are obtained by considering the limiting form of 
(2.15) as 9 + GO. The solutions to (2.15) are of the form 

f i + e x p W * 9 ) ,  (2.18) 

where 52; = Oi2[1-@(1 -c)2], 521 = Oi2pT[pT-M%~]. (2.19) 

Let us define c, - to be the values of the phase speed for which 52: vanishes. Thus, 

c , = 1 - -  1 c - = 7 .  PTi 
&' M 

(2.20) 

Note that c, is the phase speed of a sonic disturbance in the moving stream and c 
is the phase speed of a sonic disturbance in the stationary stream. At 

c, are equal. 

(2.21 

- 
The nature of the disturbances and the appropriate boundary conditions can now 

be illustrated by reference to figure 1,  where we plot c +  versus M for a typical value 
of PT.  In what follows we assume that 2: > 2;. These curves divide the (c,,M)-plane 
into four regions, where c, is the real part of c. If a disturbance exists with an M and 
c, in region 1,  then 52; and 52Z are both positive, and the disturbance is subsonic at 
both boundaries. In  region 3, both 52; and 522 are negative and hence the disturbance 
is supersonic a t  both boundaries. In region 2, 52; is positive and 528 is negative, and 
the disturbance is subsonic at + GO and supersonic a t  - GO, and we classify i t  as a fast 
mode. Finally, in region 4, 52: is negative and s21 is positive so the disturbance is 
supersonic a t  + 00 and subsonic a t  - 00, and we classify it as a slow mode. 

(region 1), one can choose the 
appropriate sign for S Z ,  and have decaying solutions. We therefore have an 
eigenvalue problem. If the disturbance is supersonic a t  either, or both, boundaries 

If the disturbance wave is subsonic a t  both 
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1.0 r Fast Modes 
Subsonic r )  = co 
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c+= 1-- 

Supersonic-Supersonic 

Slow Modes 
Supersonic r )  = co 
Subsonic r )  = - co 

0 2 
10 5 
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FIGURE 1. Plots of the sonic speeds ct versus Mach number for /I, = 3.5. 

then the asymptotic solutions are purely oscillatory. These solutions are of two 
types. It is clear that  the oscillatory solutions are either incoming or outgoing waves. 
If one assumes that only outgoing waves are permitted, the problem of finding 
solutions in regions 2, 3, or 4 is again an eigenvalue problem wherein one chooses, as 
boundary condition, the solutions to (2.15) which yields outgoing waves in the far 
field. 

However if one permits both incoming and outgoing waves in the far field it is 
obvious that there are always solutions for any c in regions 2, 3, and 4. For a given 
w ,  one can always find a continuum of & such that there is a solution to (2.15) with 
constant-amplitude oscillations at either or both boundaries. Lees & Lin gave a 
physical interpretation of this pair of incoming and outgoing waves as an incoming 
wave and its reflection from the shear layer. Mack (1975) also used this idea in 
developing a theory for the forced response of the compressible boundary layer. We 
will ignore these continuum modes in the remainder of this paper. 

One can now see that the appropriate boundary condition for either damped or 
outgoing waves in the moving and stationary streams are, respectively, 

f i - + e x p [ - ~ + ~ l  ifc, > c,, f i+exp[- iT( -~?) t ]  ifc, < c,, (2.22a) 

f i + e x p [ ~ - ~ ]  ifc, -= c-, f i + e x p [ - i T ( - ~ ~ ~ ) ; ]  ifc, > c-. (2 .22b)  

To solve the disturbance equation (2.15), we first transform it to a Riccati equation 
by setting 

Thus, (2.15) becomes 

G'+ &TG2 -[=-El G = &[T-&(U- c)". 
U-c T 

(2.23) 

(2.24) 

The boundary conditions can be found from (2.22) and (2.23). 
The stability problem is thus to solve (2.24) for a given real frequency w ,  Mach 
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S(T) 

T 0.4 
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I -0.6 

FIGURE 2. Plot of S(q) for p, = 0.5 and for various M .  

number M ,  and angle of propagation 8, with U and T defined by (2.5) and (2.8). The 
eigenvalue is the wavenumber Oi. Because this equation has a singularity a t  U = cN, 
we integrate it along the complex contour ( -6 ,  - 1) to (0, - 1) and (6, - 1) to (0, - 1) 
using a Runge-Kutta scheme with variable step size. We choose an initial Oi and 
compute the boundary conditions from (2.22). We then iterate on Oi, using Muller's 
method, until the boundary conditions are satisfied and the jump in G at (0, - 1)  is 
less than All calculations were done in 64-bit precision. 

3. Results 
In  all of our calculations we have taken y = 1.4, PT = $, 1,2, and 0 < M < 10. 
For a given real o the wavenumber, Oi, must be real for a neutral mode. If Oi = 0, 

we require that fi+constant a t  both boundaries. It can be shown that the 
corresponding phase speed is ck, defined by (2.20), and that there are eigensolutions 
to (2.24) with this boundary condition. 

Lees & Lin (1946) have proven that if a neutral mode is to exist in region 1, the 
phase speed will be given by cN = U(q,), where qc is found from the regularity 
condition 
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45" 
1.or6= 0" 60" 75" 

0 5 10 
M 

FIQURE 3. Plot of the real roots of R, c' (solid curve), versus Mach number for / I7,  = 0 .5 .  Sonic 
curves, c +  - (dashed curves), are also shown for various propagation angles. 

1.0 6 = O"'45" 60" 75" 

. c' 0.5 

.. 

- - -  
1 1 1 1 1 1 1 1 1 1 1 1 1 1 l I I l I l  

0 5 10 
M 

FIGURE 4. Plot of the real roots of S. c' (solid curve). versus Mach number for /I, = 
curves, c +  - (dashed curves), are also shown for various propagation angles. 

1. Sonic 

The corresponding neutral wavenumber, &,, must be determined numerically. The 
eigenfunction is called a subsonic neutral mode. This result was obtained for the 
compressible boundary layer but it is easy to extend it to a mixing layer. This 
criterion has been used by Lessen et al. (1965) and Gropengiesser (1969) to find the 
phase speed of the subsonic neutral modes. Note that (3.1) differs from that given by 



Inviscid spatial stability of a compressible mixing layer 

1.0 r 8 =  0" 45" 60" 75" 

, \  t c' 0.5 
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0" /4S0/ 60" / 15"/ 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  

0 5 10 

M 
FIGURE 5. Plot of the real roots of S ,  c" (solid curve), versus Mach number for ,4, = 2.  Sonic 

curves, c *  (dashed curves), are also shown for various propagation angles. 

Lees & Lin, Lessen et al. and Gropengiesser by a factor of T-' because they wrote (3.1) 
in terms of y and we have chosen to write it in terms of 7. 

The function S(7) is a cubic when U and Tare  given by (2.5) and (2.8). Explicitly, 
one finds 

Z 3 - a Z + b  = 0, (3.2) 

with (3.3) 

where Z = tanh (7).  (3.4) 

E = i ( l + Z ) .  (3.5) 

Thus, if 2 is a root of (3.2), the phase speed of a possible neutral mode is 

Equation (3.2) has either one or three real roots with at  least two of the three real 

(3.6) 

roots equal if the discriminant is zero. If we define M ,  by 
l e l  

No = 2(y- 1 )-it1 + PT +i( 1 -&$ [( 1 + &$+ ( 1  - #&*)5]]5, 

then there is one real root for M < M ,  and three real roots for M >, M,. In particular, 
as M +- 0, only one real root exists and is given by 

with corresponding phase speed 

(3.7) 

Also, as M +  m, there are now three roots Z = - 1,0 ,1 ,  giving E = 0,+, 1, respectively. 
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FIGURE 6(a ,  b ) .  For caption see facing page. 
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0 5 10 
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FIGURE 6. Plots of two-dimensional neutral curves for /I, = 0.5 versus Mach number: (a )  phase 
(solid) and sonic (dashed) speeds; ( b )  wavenumbers of the fast and slow modes; (c) frequencies of 
the fast and slow modes. 

Recall that the phase speed of a possible neutral mode is given by (3.5) for each 
real root. The theorem of Lees & Lin ensures that this is in fact a neutral mode if the 
wave speed of the mode lies in region 1,  and hence c" = cN. If a root of (3.2) yields a 
phase speed which lies in regions 2 , 3 ,  or 4, it  may, or may not, be a true neutral mode 
propagating away from the mixing layer. One must determine whether or not, for 
this phase speed, there is an outgoing solution of (2.24) which satisfies the 
appropriate boundary conditions. 

We, of course, solve for the roots of (3.2) directly but insight can be gained by 
plotting S(q) over a range of values of q for various values of M and fixed PT. Figure 
2 is a plot of S(q)  versus q for PT = 0.5 and M = 0, 2, 4, 5.5,  8, 10. One sees that, for 
M < M,, = 5.715, the single real root of (3.2) gives a c" < %; that is the 'critical point' 
is a t  some q < 0. However, ifM > M,,, there are three real roots with one a t  7 < 0 and 
the other two a t  q > 0. 

Gropengiesser stated that if PT < 0.6 and M > 3 , X ( q )  had three zeros. On closer 
examination, the results shown in his figure 7 suggest that there will always be three 
zeros for high enough Mach numbers. He was able to find a neutral solution which 
satisfied the boundary conditions for only one of these three values and hence ignored 
the other two zeros of S .  It must be noted that Gropengiesser only considered two- 
dimensional disturbances in reaching this conclusion. 

Figures 3, 4, and 5 are plots of the real roots of S ,  c", from (3.5) as a function of the 
Mach number and for PT = $, 1,2 ,  respectively. These figures show that the real zeros 
of S yield a monotonic curve and a 'bubble '. It is easy to show that this surface has 
a saddle point at PT = 1 andM = [8 / (y-  l)]:. The sonic curves c+ are also plotted for 
three-dimensional waves with propagation angles of Oo, 45O, So", 75". 

We have carried out numerical calculations in order to determine whether or not 
the zeros of S always yield the phase speed of a neutral mode. We find, in agreement 
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FIGURE 7 ( a ,  b ) .  For caption see facing page. 

with Gropengiesser, Lessen et al. and Lees & Lin, that such is the case only if the 
solution is subsonic a t  both boundaries, i.c. it  lies in region 1.  Gropcngicsser 
concluded that only one of the zeros of S gave the phase speed of a true neutral mode. 
This is true only if the mode is two-dimensional. One can see from figures 3-5 that, 
for any /IT, if the mode is two-dimensional (8 = 0") there is only one zero of S in 
region 1. We find that there is a neutral mode corresponding to this value of 6. For 
the other zeros of S, we find that there are no solutions which yield damped or 
outgoing waves if 8 = 0". However, the sonic speeds c+ arc functions of the angle of 
propagation. As 8 increases the sonic curves shift towards higher Mach number. Thus 
for any value of /IT, there will always be some angle of propagation for which all three 
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10 

FIGURE 7 .  Plots of two-dimensional neutral curves for /I, = 1 versus Mach number : (a )  phase (solid) 
and sonic (dashed) speeds; ( b )  wavenumbers of the fast and slow modes; (c) frequencies of the fast 
and slow modes. 

zeros of S lie in region 1. For example, in figure 4, if 8 > 63.44", all three zeros of S 
can correspond to modes which are subsonic at both boundaries. Hence, by the 
theorem of Lees & Lin, there are now three neutral modes with phase speeds equal 
to the value of U a t  the corresponding values of qc. Thus, the significance of the three 
real zeros of S only becomes apparent a t  very large angles of propagation. 

There can also be supersonic neutral modes: those which do not satisfy (3.1) but 
are solutions of (2.24) with only outgoing or damped waves a t  f CO. It is obvious that 
these are singular eigenfunctions. The singularity will be removed by the action of 
non-zero viscosity. Hence we can regard these singular modes as the limit of some 
viscous, spatial stability modes as the Reynolds number approaches infinity. 

One can find these modes by obtaining numerical solutions of (2.24) which are 
either decaying (if the disturbance is subsonic) or outwardly propagating (if the 
disturbance is supersonic) a t  00, without requiring that (3.1) be satisfied. We have 
carried out such calculations and found that, for any value of PT, there is always one 
supersonic neutral mode in region 2 of the (c,,M)-plane and another supersonic 
neutral mode in region 4. 

Results for the two-dimensional neutral modes are shown in figures 6, 7, and 8. 
Figures 6 ( a ) ,  7 (a )  and 8 (a )  are plots of the neutral phase speed cN as a function of the 
Mach number and for PT = f, 1,  2, respectively. The dashed curves are the neutral 
sonic modes with phase speeds c, and Oi = 0. For each value of PT there is a single 
subsonic neutral wave in region 1: As M is increased, this subsonic mode crosses over 
the sonic curve a t  M,, the Mach number at which the phase speed equals that of a 
sonic wave, into either region 2 or 4 and is transformed into a supersonic neutral 
mode. If /IT > 1,  this mode becomes a fast mode whose phase speed approaches 1 as 
M goes to infinity. If /IT < 1 ,  the mode becomes a slow mode whose phase speed 
approaches zero as the Mach number increases. In  each case, there is also another 
supersonic neutral mode, fast if PT < 1 and slow if /IT > I .  These modes, which have 
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FIGURE 8(a, b ) .  For caption see facing page. 

non-zero frequency, appear as M, where the phase speeds are equal to the sonic 
speeds. If PT = 1, the subsonic mode splits symmetrically into a fast and a slow 
supersonic wave. Note that for a small range of M around ill,, there can be more than 
three different neutral modes in addition to the two sonic modes. 

The corresponding wavenumbers, displayed in figures 6(b)-8 ( b ) ,  decrease as the 
Mach number increases from 0 to M,. The mode with the larger wavenumber is 
always the subsonic mode and its supersonic continuation a t  higher Mach numbers. 
The other mode always has a smaller wavenumber and hence a longer wavelength. 
The discontinuity in the slope of the wavenumber curves is due to the transformation 
from a subsonic to a supersonic mode when crossing a sonic curve. This is because the 
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FIGURE 8. Plots of two-dimensional neutral curves for PT = 2.0 versus Mach number : (a) phase 
(solid) and sonic (dashed) speeds; (b) wavenumbers of the fast and slow modes; (c )  frequencies of 
the fast and slow modes. 

FIGURE 9. Plot of the two-dimensional subsonic neutral eigenfunction n(q) along the contour 
7 = V,-i. The solid curve corresponds to the amplitude and the dashed curve to the phase. M = 1, 
8, = 1 ,  0% = 0.390495, czN = 0.780991, cN = 0.5. 
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FIGURE 10. Plot of the two-dimensional fast supersonic neutral eigenfunction n(g) along the 
contour g = g,- i. The solid curve corresponds t o  the amplitude and the dashed curve to  the phase. 
M = 2.5, p, = 1, wN = 0.173064, aN = 0.252214, cN = 0.68618. 
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FIGURE 11. Plot of the two-dimensional slow supersonic neutral eigenfunction U(q) along the 
contour g = g,-i. The solid curve corresponds t o  the amplitude and the dashed curve to  the phase. 
M = 2.5. p, = 1. wN = 0.079151, aN = 0.252214, cN = 0.31382. 
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FIGCRE 12. Plot of the two-dimensional fast supersonic neutral eigenfunction n(7) along the 
(.ontour 7 = vr- i. The solid curve corresponds to the amplitude and the dashed curve to the phase. 
M = 5. /3, = 1 ,  ox = 0.184813, ax = 0.215661, cN = 0.85696. 

character of the supersonic neutral mode is singular and that of the subsonic neutral 
mode is regular. Thus, the limit of the slopes of their respective wavenumber curves 
a t  the sonic point need not be equal. For PT = 1, both the fast and slow supersonic 
waves have the same value of the wavenumber a t  any M > M,  = M*. For all P T ,  the 
wavenumbers increase slightly with Mach number. 

Finally, the corresponding frequencies, displayed in figures 6 (c)-8 ( c ) ,  decrease as 
the Mach number increases from 0 to  Ms. For M > M,, the frequency of one of the 
supersonic modes increases and that of the other decreases. This, combined with the 
relatively constant values of the wavenumbers, leads to the appearance of fast and 
slow modes. If PT < 1,  the curves of wN for the supersonic modes must cross a t  some 
M > M , .  Thus, one will have two different neutral modes a t  the same frequency and 
Mach number but with different wavenumbers. If PT > 1 the neutral modes have 
quite different frequencies. 

Based on our numerical results, we find that for M = 0, 

consistent with (3.8) and figures 6-8. 
Figures 9-13 are plots of selected two-dimensional neutral eigenfunctions for 



T. L. Jackson and C. E .  Grosch 

\ \ 

\ \ 

\ \ 

\ \ 
18 0 

I I I I I I I I I I  I I I I I  I I 

\ I ! '  

\ 

\ 

\ \ 

\ \ 

\ \ \ 

FIGURE 13. Plot of the two-dimensional slow supersonic neutral eigenfunction n(7) along the 
contour 7 = yr-i. The solid curve corresponds to the amplitude and the dashed curve to the phase. 
M = 5 ,  /3, = 1, wN = 0.030847, aN = 0.215661, cN = 0.14303. 
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FIGURE l4(a).  For caption see facing page. 
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FIGURE 14. Plot of three-dimensional (0 = 75’) neutral curves for BT = 1 versus Mach number: (a) 
phase (solid) and sonic (dashed) speeds; ( b )  wavenumbers; (c) frequencies; all of the fast, slow, and 
continuation of cN = 4 modes. 

PT = 1.  These plots show the variation of I7 with vr on the contour vi = - 1. All of 
these have been normalized so that the maximum of the absolute value of I7 is unity. 
The eigenfunction shown in figure 9 is a subsonic neutral mode a t  M = 1. The wave 
is subsonic a t  both boundaries, so I7 decays exponentially away from the mixing 
layer. Note the rapid variation of the phase near vr = 0. Figures 10 and 11 are plots 
of the two fast and slow supersonic neutral waves of 17 at M = 2.5. The eigenvalue 
for the eigenfunction in figure 10 lies in region 2 so the fast wave is subsonic at + 00 

and supersonic a t  - 00. The eigenvalue for the slow wave shown in figure 11 lies in 
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FIGURE 15. Plot of maximum growth rate of the fast and slow two-dimensional modes versus 
Mach number for B, = 0.5. 
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FIGURE 16. Plot of maximum growth rate of the fast and slow two-dimensional modes versus 
Mach number for 8,. = 1. 

region 4 and has just the opposite behaviour. Both modes show exponential decay in 
the subsonic region and oscillations with constant amplitude and linear phase in the 
supersonic region. Both show a rapid phase shift near the centre of the mixing layer. 
Finally, figures 12 and 13 are plots of the supersonic neutral eigenfunctions a t  M = 

5. As before, the eigenvalue of the fast wave of figure 12 lies in region 2 and that of 
the slow wave of figure 13 in region 4. The behaviour of these eigenfunctions is quite 
similar to  that of the modes at M = 2.5,  but note that the wavelength of the 
oscillation decreases as the Mach number increases. 
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FIGURE 17. Plot of maximum growth rate of the fast and slow two-dimensional modes versus 
Mach number for /3, = 2. 
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FIGURE 18. Plot of phase speeds cph of the most rapidly growing fast and slow two-dimensional 
modes versus Mach number for /3, = 0.5. 

As was stated above all three real roots of S can be the phase speeds of subsonic 
neutral modes if the disturbance wave is three-dimensional. As an example, we show 
in figure 14 results for the neutral modes at PT = 1 and 8 = 75'. From M = 0 up to  
M ,  = 4.472 there is a single subsonic neutral mode with cN = 0.5 and both aN and wN 
monotonically decreasing. For M 2 M,, 8 has three real roots and these are the phase 
speeds of the three subsonic neutral modes for M ,  < M < 5.15. One of these modes 
has cN = 0.5, another has an increasing cN and the other a decreasing cN. From figures 



630 T .  L.  Jmkson and C. E .  Grosch 

0 5 10 

M 
FIGURE 19. Plot of phase speeds cph of the most rapidly growing fast and slow two-dimensional 

modes versus Mach number for /3, = 1. 
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A4 
FIGURE 20. Plot of phase speeds cph of the most rapidly growing fast and slow two-dimensional 

modes versus Mach number for BT = 2. 

14(b) and 14(c) one can see that aN and wN for the mode cN = 0.5 decrease 
monotonically until they vanish a t  M* = 7.727. The wavenumbers of the other two 
neutral waves increase with M beyond M,. The curves of aN for these modes show a 
discontinuity in slope a t  M, = 5.15 as they intersect the sonic curves and are 
transformed into supersonic neutral modes. The phase speeds of these supersonic 
modes are only slightly different from, and appear to  be asymptotic to, the values 
obtained from the zeros of S. Finally, the curves of wN split a t  M ,  with that of the 
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FIGURE 21. Plot of growth rates ai of the fast and slow two-dimensional modes versus 
frequency for 8, = 2 and M = 2.5. 

fast mode increasing and that of the slow mode decreasing. These curves also show 
discontinuities in slope at M,  = 5.15. 

We have carried out calculations to determine the growth rates of the unstable 
modes. Some of these results are shown in figures 15, 16, and 17 where we have 
plotted the maximum growth rate ( - aimax) for two-dimensional modes as a function 
of Mach number and for PT = g, 1, 2, respectively. Each of these figures shows two 
curves. The curve giving the larger values of the growth rate is that of the first group 
of unstable waves, that group which exists for M < M,. For PT < 1 this group 
corresponds to the slow modes while for PT > 1 it  corresponds to the fast modes. The 
second curves gives the maximum growth rate for the group of unstable waves which 
appears a t  M,. These are the fast modes for PT < 1 and the slow modes for PT > 1. 
In  all cases there is a decrease in the maximum growth rate by a factor of five to ten 
as the Mach number approaches M,. For Mach numbers greater than M,, the growth 
rates level off and those of the slow modes begin to increase with increasing Mach 
number while those of the fast modes approach a limiting value. However, even at 
Mach 10, the growth rates are still small compared with those at  low subsonic speeds. 
Finally, note that a decrease in PT results in an increase in the growth rate of the 
unstable modes a t  any Mach number. 

In figures 18-20 we plot the phase speeds cph of the most rapidly growing fast and 
slow two-dimensional modes versus Mach number for PT = i, 1, 2, respectively. As 
would be expected the band of unstable waves is adjacent to the neutral modes for 
M < M,. For (BT < 1, the most rapidly growing mode has a phase speed slightly 
greater than the corresponding neutral mode in this range, while for PT > 1, the 
phase speed is slightly less than that of the neutral mode. For Mach numbers greater 
than M, the most unstable mode has a phase speed which lies between the supersonic 
neutral curve and the sonic neutral curve. Note that for BT = 2, there is a rapid 
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FIGURE 22. Plot of growth rates ai of the fast and slow two-dimensional modes versus 
frequency for b, = 2 and M = 5. 

change in the phase speed of the fast mode around M,. This is due to a shift in the 
frequency of the most unstable mode in this Mach number range. 

In order to display the characteristics of both of these unstable waves in more 
detail we consider a single case, that of PT = 2. The phase speed, wavenumbers, and 
frequencies of the neutral modes are shown in figure 8 and the maximum growth 
rates in figure 17. The slow supersonic group of unstable modes only exist for 
M > M ,  = 2.414. Figure 21 is a plot of the growth rate versus frequency of the 
unstable two-dimensional modes a t  Mach 2.5. This value ofM was chosen so as to be 
slightly above M,. The upper curve is that of the fast waves. There are two neutral 
frequencies : wN = 0 corresponds to the sonic mode c, ; and wN = 0.24 corresponds to 
that of the fast supersonic neutral mode. From figure 8 one can see that the phase 
speeds of these modes lie in the range 0.6 to 0.745, suggesting that the wave packets 
of these modes would have modest dispersion. The upper curve has two maxima, one 
a t  w = 0.025 and the other a t  w = 0.09. These are nearly the same size, but that of 
the larger value of w is much broader. 

The growth rates for the slow supersonic modes are shown by the lower curve in 
figure 21. These slow waves have phase speeds between 0.494 and 0.566. The slow 
unstable modes have a maximum growth rate of about two-thirds of that of the fast 
modes. However, the band of unstable frequencies is much narrower for the slow 
modes than for the fast ones. The zero of the growth rate at wN = 0 corresponds to 
the sonic curve c- and the other zero to the slow supersonic neutral modes. 

The results shown in figure 22 are similar to that of figure 21 but for Mach 5. The 
maximum growth rates of both groups of waves a t  Mach 5 are only about one-fifth 
of those at Mach 2.5. The fast modes exist over a frequency range about the same as 
a t  Mach 2.5, but the phase speeds all lie in the range of 0.8 to 0.873. The frequency 
band of the slow modes is much less at Mach 5 than at 2.5, and hence there is a shift 
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FIGURE 23. Plot of growth rates ai for three-dimensional modes versus frequency for BT = 2, 
M = 2.5: (a) fast modes; (b) slow modes. 

in the frequency of maximum growth towards zero. Thus a t  Mach 2.5 the slow modes 
have their maximum growth rate a t  a higher frequency than the fast modes but this 
is reversed a t  Mach 5. The phase speeds of the slow modes are much different from 
those of the fast modes at this Mach number, ranging from 0.249 to  0.283. Since the 
range of phase speeds of both the fast and slow modes decreases as the Mach number 
increases, the amount of dispersion is reduced as the Mach number increases. 

The results of figures 21 and 22 are for two-dimensional modes. The same general 
behaviour is also characteristic of three-dimensional waves. Figure 23 (a) shows the 
growth rates of the fast modes and 23(b) the growth rates of the slow modes as a 
function of frequency for different angles of propagation at PT = 2 and Mach 2.5. 
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FIGURE 24. Plot of growth rates tli for three-dimensional modes versus frequency for p, = 2, 
M = 5: (a) fast modes; (b) slow modes. 

Note the difference in the range of frequencies between the fast and slow modes. The 
maximum growth rate of the fast modes increases as 8 increases up to about 60" and 
then decreases for larger angles of propagation. The range of unstable frequencies 
decreases as 6 increases. The results given in figure 23(b) show that the slow modes 
have a different behaviour. The maximum growth rate occurs for two-dimensional 
waves and decreases as the angle increases and essentially disappears for 6 > 20°, 
because then the mode becomes subsonic. 

Figure 24 shows the variation of the growth rate with frequency for both fast and 
slow modes for various angles of propagation a t  PT = 2 and Mach 5 .  The results are 
similar to those of figure 23, but note the difference in magnitude. As the angle of 
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propagation increases the fast modes experience a decrease in the range of unstable 
frequencies and an increase in the growth rate; the maximum occurs at about 
B = 75'. The slow modes do not show much of an increase in maximum growth rate 
with angle of propagation. In contrast to Mach 2.5 case, the most unstable slow 
modes are three-dimensional. 

We find, in agreement with Gropengiesser, that for low and moderate Mach 
numbers, the flow becomes less unstable as the stationary gas becomes hotter. He 
also stated that the growth rates decrease with increasing Mach number over the 
range of Mach numbers which he studied. This is certainly true for M < M,, where 
one can see that there is a very rapid decrease in the maximum growth rate with 
increase in Mach number. For Mach numbers greater than M,, we find that the rate 
of decrease is much smaller and eventually, at some moderate value ofM, the growth 
rate begins to increase. Gropengiesser also found a second unstable mode for two- 
dimensional waves in a narrow range of Mach numbers, 1.54 < M < 1.73. He stated 
that this second mode had a growth rate comparable with the first when B = 30' and 
PT = 0.6. Finally, he indicated that the growth rate of the second mode decreased 
sharply as PT was increased. It is clear from the results presented in figures 6, 7, 8, 
and 14 that there will always be two groups of unstable modes ifM 2 M,. Of course 
these groups have different ranges of frequencies and will have quite different phase 
speeds. 

4. Summary and conclusions 
In this work we have considered the inviscid spatial stability problem for the 

compressible mixing layer with the mean velocity profile approximated by the 
hyperbolic tangent. We have found that there is only a single subsonic neutral mode 
for two-dimensional waves, but that there can be three for three-dimensional waves. 
Beyond the sonic curves the subsonic neutral modes are transformed into supersonic 
neutral modes which are subsonic at one boundary and supersonic at the other. We 
have not found any neutral or unstable modes whch are supersonic at both 
boundaries. 

There are always a t  least two bands of unstable frequencies for Mach numbers 
greater than M,. One of these bands is a group of fast and the other a group of slow 
unstable supersonic modes. The fast modes are supersonic with respect to the 
stationary stream and the slow modes are supersonic with respect to the moving 
stream. It is important to note that both the fast and slow supersonic modes are 
vorticity modes and neither of them is an acoustic mode (Mack 1989). These groups 
of unstable modes lie in the frequency bands between zero, corresponding to the sonic 
mode, and the frequency of the supersonic neutral mode. Because these frequency 
bands always overlap for some range of frequencies, there exist two unstable modes 
at a fixed Mach number and BT for every frequency in this range. The phase speeds 
of both the fast and slow supersonic modes have a small range about the average, so 
that little dispersion of wave packets is expected, with a reduction in the dispersion 
as the Mach number is increased. 

Three-dimensional disturbances show the same general characteristics as two- 
dimensional disturbances. There is always a range of propagation angles for which 
both the fast and slow unstable modes exist. We also find, in agreement with 
previous studies, that the maximum growth rate for any PT and M occurs for three- 
dimensional waves. 

A decrease in BT results in an increase in the growth rate of the unstable waves a t  
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any Mach number. An increase in the Mach number at a fixed /IT results in a decrease 
of the growth rates by a factor of 5 to 10 up to M,. For Mach numbers greater than 
M,, the growth rates level off and those of the slow modes begin to increase with 
increasing Mach number while those of the fast modes approach a limiting value. 
However, even a t  Mach 10, the growth rates are still small compared with those a t  
low subsonic speeds. This, combined with the fact that the unstable waves have little 
dispersion, is a possible mechanism responsible for the observed increase in the flow 
stability. 
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J. P. Drummond, M. G. Macaraeg, L. M. Mack and M. V. Morkovin. This work was 
supported by the National Aeronautics and Space Administration under NASA 
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